Automated Glacier Modelling from Digital Globe Imagery

David Shean from the University of Washington talks at FOSS4G 2014 about using Ames Stereo Pipeline in his work to autonomously model glaciers at 2 m / px using data from Digital Globe.

Processing Antarctica

I’ve been sick all last week. That hasn’t stopped me from trying to process World View imagery in bulk on NASA’s Pleiades supercomputer. Right now I’m just trying to characterize how big of a challenge it is to process this large satellite data on a limited memory system for an upcoming proposal. I’m not pulling out all the tricks we have to insure that all parts of the image correlate. Still that hasn’t stopped ASP from producing this interesting elevation model of a section of Antarctica’s coastline, just off of Ross Island. Supposedly Marble Point Heliport is in this picture (QGIS told me it was the blue dot at the bottom of the coastline).

I’m using homography alignment, auto search range, parabola subpixel, and no hole filling. The output DEMs were rasterized at 5 meters per pixel. The crosses or fiducials in the image are posted 5 km apart. This represents a composite of 10 pairs of WV01 stereo imagery from 2009 to 2011 and no bundle adjustment or registration has been applied. The image itself is just a render in QGIS where the colorized DEM has had a hillshade render of the same DEM overlayed at 75% transparency.

I haven’t investigated why more of the mountains didn’t come out. When it looks like a whole elevation contour has been dropped, that’s likely because auto search range didn’t guess correctly. When it looks like a side of the mountain didn’t resolve, that’s likely because there was shadow or highlight saturation in the image. Possibly it could also be that ASP couldn’t correlate correctly on such a steep slope.