Advances in LRO-NAC processing in ASP

Since I last wrote, we’ve hired a new full-time employee. His name is Scott and we assigned him the task of learning ASP and LROC. The first utilities he’ll be contributing back to ASP are lronacjitreg and lronac2mosaic.py. The first utility is very similar to the ISIS utility with a similar name designed for HiRISE. The second utility, lronac2mosaic.py, uses the first tool and can take LRO-NAC EDR imagery and make a non-projected image mosaic. What lronac2mosaic.py does internally is ‘noproj’ and then ‘handmos’ the images together. There is an offset between the images due to model imperfections. Finding the correct offset so the combined images are seamless is the task of lronacjitreg. All of this just a streamed line version of what I wrote in a past blog post.

Previously users and our team only had the option to run all 4 combinations of the 4 LRO-NAC input files through ASP and then glue them together afterwards. Now with the use of lronac2mosaic, we can feed whole LRO-NAC observations into ASP and receive the full DTM in one go. No messy mosaicking of 4 files.

I’ve used Scott’s program successfully to recreate most DTMs that ASU has made via SOCET SET. Using my home server, I’ve been able to recreate 77 of their DTMs to date. We’ve been fixing bugs as we hit them. One of the biggest was in our search range guessing code. The next upcoming release of ASP will have the fruits of that labor. Previously ASP had a bad habit of ignoring elevation maximas in the image as it thought those IP measurements were noise. Now we should have a better track record of getting measurements for the entire image.

One of the major criticisms I’m expecting from the large dump of LRO-NAC DTMs we expect to deliver next year is what is the quality of the placement of our DTMs in comparison to LOLA. Another engineer we have on staff, Oleg, has just the solution for this. He has developed an iterative closest point (ICP) program called pc_align which will be in the next release. This is built on top of ETHZ Autonomous System Lab’s libpointmatcher and has the ability to take DTMs and align them to other DTMs or LIDAR data. This enables us to create well-aligned products that have height values agreeing within tens of meters with LOLA. Our rough testing shows us having a CE90 of 4 meters against LOLA after performing our corrections.

We’re not ready for the big production run yet. One problem still plaguing our process is that we can see the CCD boundaries in our output DTMs. We believe most of this problem is due to the fact that the angle between line of sight of the left and right CCDs changes with every observation. ISIS however only has one number programmed into it, the number provided by the FK. Scott is actively developing an automated system to determine this angle and to make a custom FK for every LRO-NAC observation. The second problem we’re tracking is that areas of high slope are missing from our DEMs. This is partially because we didn’t use Bayes EM for our test runs but it also seems like our disparity filtering is overly aggressive or just wrong. We’ll get on to that. That’s all for now!

Second Thought on LRO-NAC NoProj

Mark Rosiek from USGS Astrogeology expressed some doubt in my noproj recipe for LRO-NAC. This is completely reasonable because if everything were perfect, there would be no offset after the noproj step between the LE and RE CCDs. He requested 2 DEM samples of Tsiolkovsky Crater so he could compare to USGS work. I decided I’d try the same during free time through out the day. Unforunately I couldn’t find a trusted reference DEM to compare against. I can’t find ASU’s result of this area on their RDR webpage and it is impossible to use LMMP Portal. Can you even download the actual elevation values from LMMP? No I don’t want your color render or greyscale! 

Next best idea is to just difference the two DEMs I created and compare them. I didn’t bundle adjust these cameras at all so their placement to each other is off by some ~150 meters. After ICPing them together and then differencing them I can produce an error map. The gradient or shape of the error can help clue into how bad my fiddling in the ideal camera was. Below is the result between the stereo pairs M143778723-M143785506 and M167363261- M167370048.

You can definitely see the CCD boundary in this error map. You can see the CCD boundary in the hillshade. It’s about a 1 meter jump when looking at a single DEM. Error map seems to agree with this and shows a peak error at 4 meters in the CCD boundary location.

So what is the cause of these errors? Well we have two sources, (1) the projection into the ideal camera model and (2) bad spacecraft ephemeris. I’d argue that most of the difference between these two DEMs is the spacecraft ephemeris. That’s top priority in my book to correct. However when I look at the disparity map for these stereo pairs, there is a definitive jump at the CCD boundary. The cause of that would be an improper model of the angle between LE and RE cameras in ISIS. This should be expected. They’re currently not modeling the change in camera angles with respect to temperature. Also when looking at the vertical disparity, it seems one side is always brighter than the other. This suggests that I didn’t quite have the correct values for input to handmos.

Trying to fix all of this now might be a mistake on my part. I know that ASU will eventually produce new SPICE data that contains corrections from LOLA and a USGS study. I also imagine that eventually the work of E. J. Speyerer et al. will be implemented in ISIS.

Jigsawing ISIS Ideal Cameras

Ideal cameras that I’m talking about are images that have been noproj’d together, such as LRO-NAC and HiRISE observations. Previously I thought this was impossible because Qnet required unique serial numbers for all observations and getsn on a noproj’d image just returned an ‘unknown’. Turns out ISIS can totally do this. You just need to make a couple modifications.

  1. Download the Ideal data set.
  2. List Ideal as a dataset inside your $ISISROOT/IsisPreferences

After you’ve done this, you are now able to run getsn and qnet successfully on the noproj’d imagery!

> getsn from=<LROC image
>  IDEAL/IDEAL/322147421.58037

This greatly simplifies the workflow I described for HiRISE in this post.

Noproj’n LRO Imagery

Earlier this year I found out that I got my first proposal funded. I’ve had directed funding before thanks to NASA’s cyrosphere program. I’ve also been a Co-I on numerous other funded proposals with co-workers and friends at USGS. However my LASER proposal to perform Mass DEM production from LROC-NA imagery was something I wrote as PI and was competed. Now that it is accepted, I have two years to follow through and I’d like to share the whole process here on the blog.

The first problem I’m going to write about has bugged me for a while. That problem is that each LROC-NA observation is actually 2 files and makes using ASP awkward. In the past I’ve been telling people to run perform 4 runs with stereo. Do the combinations of LE-LE, LE-RE, RE-LE, and RE-RE. However UofA had the same problem with HiRISE, which comes down in 20 different files. They had worked out an ISIS process chain that would noproj those files together among other things to make a single observation. I don’t know why such step doesn’t exist for LROC-NA but today I’ll show you what I’ve come up with.

If you try right now to noproj the RE cub file to the LE cube file you’ll find that the program errors out because an ideal camera model for LROC has not been defined. Definitions for ideal noproj cameras for all ISIS cameras are defined in a file at $ISIS3DATA/base/applications/ noprojInstruments003.pvl. Looking at that file we see that there are 5 elements that can be defined for the ideal camera model, TransY, ItransS, TransX, ItransL, and DetectorSamples. DetectorSamples is easy; it’s what the output image width should be in the final image.  The Trans* variables are measured in millimeters and define a focal plane offset from the original camera model we are using. I plan to noproj with the match file being the LE file. Thus Trans* references a shift from the original position of the LE sensors. The Itrans* variables are pixel conversion of the millimeter measurements. It’s used by ISIS to run the math the other direction. If Trans* and Itrans* variable don’t match, funny errors will occur where the CCDs noproj correctly but the triangulation in ASP is completely bonkers. Relating the two is easy, just use the pixel pitch. For LROC-NA that is 7 micrometers per pixel.

So how do we decide what to set the TransY and TransX values to be? If those values are left to zero, the LE image will be centered on the new image and the RE will be butted up beside but falling off the edge of the new image. A good initial guess would be to set TransY to be a shift half the CCD width. A better idea I thought to use was to look at the FK kernel and identify the angle differences between the two cameras and then use the instantaneous field of view measurement to convert to pixel offset between the two CCD origins. Use pixel pitch to convert to millimeters and then divide by two will be the shift that we want. Below are the final noproj settings I used for LROC.

 Group = "LUNAR RECONNAISSANCE ORBITER/NACL"
    TransY = 16.8833
    ItransS = -2411.9
    TransX = 0.6475
    ItransL = -92.5
    DetectorSamples = 10000
  End_Group

At this point we can noproj the imagery and then handmos them together. A naïve version would look something like the following.

> noproj from=originalRE.cub to=RE.cub match=originalLE.cub
> noproj from=originalLE.cub to=LE.cub match=origianlLE.cub
> cp LE.cub LERE_mosaic.cub
> handmos from=RE.cub mosaic=LERE_mosaic.cub

Alas, the LE and RE imagery does not perfectly align. In the HiRISE processing world we would use hijitreg to determine a mean pixel offset. There is no generic form of hijitreg that we can use for LROC-NA. There is the coreg application, but in all my tests this program failed to find any correct match points between the images. I’ve tried two other successful methods. I’ve manually measured the offset using Qtie. Warning: Sending this images to Qtie requires twiddling with how serial numbers are made for ideal cameras. This is something I should document at some point as it would allow bundle adjusting ideal cameras like fully formed HiRISE and LROC images. My other solution was the example correlate program in Vision Workbench.  I did the following to make processing quick (5 minutes run time).

> crop from=LE.cub to=LE.centerline.cub sample=4900 nsamples=200
> crop from=RE.cub to=RE.centerline.cub sample=4900 nsamples=200
> parallel isis2std from={} to={.}.tif format=tiff ::: *centerline.cub
> correlate --h-corr-min -60 --h-corr-max 0 --v-corr-min 0 --v-corr-max 60 LE.centerline.tif RE.centerline.tif

That creates a disparity TIF file. The average of the valid pixels (third channel is 1) can then be used to solve for the mean translation. That translation can then be used during handmos by using the outsample and outline options. Ideally this would all be one program like hijitreg but that is for another time. Below is the final result.

Hijitreg actually does more than just solve for the translation between CCDs on HiRISE. It correlates a line of pixels between the CCDs in hope of determining the jitter of the spacecraft. I can do the same!

From the above plots, it doesn’t look like there is much jitter or the state of the data is not in form that I could determine. The only interesting bit here is that the offset in vertical direction changes with the line number. I think this might be disparity due to terrain. The imagery I used for my testing was M123514622 and M123521405, which happened to be focused on the wall of Slipher crater. The NA cameras are angled 0.106 degrees off from each other in the vertical direction. Ideal stereo geometry would 30 degrees or 15 degrees, but 0.106 degrees should allow some disparity given the massive elevation change into the crater. I wouldn’t recommend using this for 3D reconstruction but it would explain the vertical offset signal. The horizontal signal has less amplitude but does seem like it might be seeing spacecraft jitter. However it looks aliased, impossible to determine what the frequency is.

Anyways, making a noproj version of the LROC-NA observation is a huge boon for processing with Ames Stereo Pipeline. Using the options of affine epipolar alignment, no map projection, simple parabola subpixel, and it is possible to make a beautiful DEM/DTM in 2.5 hours. 70% of that time was just during triangulation because ISIS is single threaded. That would be faster with the application parallel_stereo (renamed from stereo_mpi in ASP 2.2.2).